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GENERALIZED HERMITE INTERPOLATION VIA MATRIX-VALUED 
CONDITIONALLY POSITIVE DEFINITE FUNCTIONS 

FRANCIS J. NARCOWICH AND JOSEPH D. WARD 

ABSTRACT. In this paper, we consider a broad class of interpolation problems, 
for both scalar- and vector-valued multivariate functions subject to linear side 
conditions, such as being divergence-free, where the data are generated via in- 
tegration against compactly supported distributions. We show that, by using 
certain families of matrix-valued conditionally positive definite functions, such 
interpolation problems are well poised; that is, the interpolation matrices are 
invertible. As a sample result, we show that a divergence-free vector field can 
be interpolated by a linear combination of convolutions of the data-generating 
distributions with a divergence-free, 3 x 3 matrix-valued conditionally positive 
definite function. In addition, we obtain norm estimates for inverses of in- 
terpolation matrices that arise in a class of multivariate Hermite interpolation 
problems. 

0. INTRODUCTION 

Background. The last few years have seen an increase in our theoretical un- 
derstanding of methods for dealing with the problem of interpolating function 
values when the data sites are both scattered and multidimensional. Duchon's 
work on the method of thin-plate splines [5, 6] and the work of Micchelli [18] 
and Madych and Nelson [15, 16] on radial basis functions (RBFs) established 
the invertibility of the interpolation matrices associated with these functions; 
that is, their work established that the scattered-data interpolation problem was 
well poised-i.e., a solution to the problem exists and is unique-relative to 
the families of either the thin-plate splines or certain RBFs, such as the Hardy 
multiquadrics [10, 1 1] or the Gaussians. The Hardy multiquadrics have been 
applied extensively in surface fitting problems arising in geodesy, geophysics, 
and other areas [1 1], while the Gaussians have been employed in problems aris- 
ing in connection with neural networks [1, 21, 22] and adaptive control [24]. 

A method for dealing with a Hermite interpolation problem-the problem of 
interpolation of data involving both function values and values of combinations 
of derivatives-when the data come from scattered, multidimensional sites was 
introduced by Hardy [1 1], who mentioned that he had had computational suc- 
cess with it. This method also arises at least implicitly in connection with the 
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collocation methods for numerically solving PDEs introduced by Kansa [13, 
14]. 

In [12], Jetter, Riemenschneider, and Shen considered the problem of car- 
dinal Hermite interpolation on the lattice Zd by a suitable basis of functions. 
They employed a matrix-valued symbol, whose determinant they proved was 
nonvanishing-provided only mild restrictions were met-, and thereby estab- 
lished that the Hermite interpolation problems under consideration were well 
poised. The basis utilized was generated by multiplying functions with suitable 
decay by certain trigonometric polynomials. There are many RBFs, Gaussians 
for example, that fall into the class of functions having the appropriate decay 
properties; however, the popular Hardy multiquadrics apparently do not. The 
arguments in [12] involve the lattice in an inherent way, and hence they do not 
apply to the scattered-data setting. 

Wu [26], who used Kriging methods and a basis generated by a function 
(0: RIl -* R having a distributional Fourier transform that agreed with a posi- 
tive function 0 on RS\{O}Gaussians and Hardy multiquadrics are such o- , 
discussed a broad class of scattered-data Hermite-type interpolation problems 
in terms of their being well poised. Specifically, Wu dealt with the following 
situation: Let {xl, ... , xm}-the set of centers-be a finite subset of Rls, and 
let {LI, ... , Lm} be a set of linearly independent linear functionals involving 
linear combinations of point evaluations, differentiations, and difference oper- 
ators that are evaluated on some of the centers. The problem is to interpolate 
data generated by the Lj 's with the additional requirement that the method 
employed reproduces exactly any degree-(k - 1) polynomial that generates the 
data. To simplify matters, we will describe only the problem without any re- 
quirement concerning polynomial reproduction. Consider functions of the form 
s(x) :Z= E l AjLJ [f ip(x - y)], where LJ acts on the variable y, and the Aj 's 
are arbitrary complex numbers. The main result in [26] is that if di, .--, dm 
are arbitrary complex numbers, and if certain integrals that involve ( exist, 
then there exist unique constants AlI, ... , Am such that s satisfies Lj(s) = dj 
for j = 1, ..., m. Thus, for example, if s = 1, m = 2, and f is a smooth 
function, then the linear functionals LI (f) = f (x2)+ f'(xl) and L2(f) = f (XI) 
can be used to form the set {L1, L2}. It should, however, be noted that the 
number of linear functionals must equal the number of centers. Thus, to use the 
results in [26] to solve the problem in which LI f = f(xl) and L2(f) = f' (XI), 
one must introduce a second center x2 $ xl . 

For a lucid, concise discussion of the results in [12] and [26], see Buhmann 
[4]. 

An example. In order to clarify the generalized Hermite interpolation problems 
that we will deal with in this paper, we will first look at an illustrative example 
involving fluid flow; terms are from R. Meyer's book [17]. 

An incompressible fluid that has reached its steady state is described by 
a smooth, time-independent vector field on R3, the fluid's velocity, v(x) = 
(p(x), q(x), r(x)), where x := (x, y, z). Because the flow is incompressible, 
v is divergence-free; that is, V * v(x) 0_ O. 

Consider the following interpolation problem for an incompressible fluid. 
The data available consists of the following: 

(i) di = p(xl), the x-component of v at a point xl in R3; 
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(ii) d2 = r(x2), the z-component of v at x2 $ xl; 
(iii) d3 = V x v(xl) * k = q, (xl) - py (xl), the z-component of the vorticity; 
(iv) d4 = ffsv n dS, the flux over S, the hemisphere X2 +y2+z2 1, 

z > 0, with orientation chosen so that n * k > 0. 
Regard the vectors involved as columns. It is convenient to rewrite the data in 
terms of these compactly supported column-vector distributions: 

6a(X - XI) 0 
01 (X) := O 02(X) :=I 

Ox, )5(X - x2) x 

/ aay(X-X1) \ t ~~XX(X,Y) =6(z -V21~ X~2_ yf)8 
- ~(x - XI) 9I _X2 y2(z 12 y)) 

03(X): -a 6(X- XI) 04 (X)= (Z A .,- 

Here, x(x, y) is the characteristic function for {(x, y) e R2: x2 + y2 < 1}, 
and 5 is the Dirac delta function. In terms of these distributions, the data set 
becomes 

dj =|T(x)v(x) d3x, j=1,..., 4. 

Let 5div denote the set of all C" vector fields that are divergence-free. It is 
important to note when the compactly supported distributions generating this 
data act on vector fields in Odiv, they are linearly independent. If S were 
closed, the divergence theorem would imply that q4 would vanish on 5div; 
the qj 's would not be linearly independent in this case. We will say that a set 
of compactly supported distributions is 5div-linearly independent if the set is 
linearly independent when restricted to functions in Odiv . 

Using a vector field from Odiv, so that the incompressible character of the 
fluid is preserved, we wish to interpolate the data given above. To do this, we 
will use a matrix-valued "RBF" that we construct in ?6: 

hx3x(x) = {(4t - 4t211xI12)I + 4t2XxT}e tjjXj1, 

where t > 0 is a parameter at our disposal. It is easily shown that the columns 
of h?3x3 are divergence-free vector fields. The candidates for interpolants will 
be taken to have the form 

4 

V(x)=Z cj J x3(x _ x') j(x') d3x', where cj e R,j=1, .. ., 4. 
j=1 

Apart from the implied matrix multiplication, the integral above is the usual 
convolution product for distributions [8, 25]. If we denote convolution by * 
and we are careful about the order in which quantities are multiplied, we may 
write the last equation as 

4 

V(x) = cjh 3x3*j(X) 

j=l 

One may show by direct computation that V(x) is a vector field in 5div. 
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Can we choose the coefficients cj so that the vector-valued function V inter- 
polates the data, for an arbitrary choice of the dj 's? This question is equivalent 
to the question of whether the 4 x 4 matrix A, with entries 

Ak,] j = | jj(X)htx3 * qj(x) d3x, 

is invertible. In fact, it is a consequence of our method of constructing h3X3 
that A is positive definite, and therefore invertible. Thus, if the coefficient 
vector is c = A-Id, then V will interpolate the data. 

The matrix-valued nature of h3X3 is essential if we wish our interpolants 
to be divergence-free. One can show, using Fourier transform theory, that it 
is impossible to produce such a vector field with scalar RBFs. A second fea- 
ture is that the compact distributions employed were linearly independent when 
restricted to the space Odiv . If this were not the case, A would have been sin- 
gular. It should be stressed here that one may have linear independence relative 
to all C?? vector fields, but not relative to the divergence-free vector fields. As 
we mentioned above, if the surface S used to define 04 were closed, then for 
all v E Q5div we would have fR3 qT (x)v(x) d3x = 0. On the other hand, as 
long as the compact distributions used are linearly independent when restricted 
to Odiv, they can be arbitrary; there is no restriction to point evaluations- 
whence our ability to interpolate fluxes. The space 5div has a very important 
feature that allows us to work in it: 5div has the property that if v E Odiv, then 
v * ip is also in Odiv for any scalar-valued compact distribution (O. Finally, this 
example provides us with a good illustration of what a "generalized Hermite 
interpolation problem" is, what it is good for, and what it means for such a 
problem to be well poised. 

Outline and summary. Our purpose in writing this paper is three-fold. First, we 
want to provide a distributional framework within which one may study ques- 
tions of whether generalized Hermite interpolation problems are well poised 
and whether they are stable. The problems that we address have data gener- 
ated by compactly supported distributions integrated against a COO function 
f: RS _ C(n, where f may satisfy side conditions (e.g., V f 0) that amount 
to the f 's belonging to an admissible subspace e (see Definition 1.1) of the 
C?? functions. Such data of course can be generated by distributions that 
are point evaluations, difference operators, or differential operators applied to 
a scalar-valued f, and so the problems treated in [26] are included among 
those that we deal with here. The interpolant solving such a problem is not 
only required to reproduce the data, but it is also required to be in e and to 
agree with a polynomial of some predetermined degree when that polynomial 
generates the data. To set up this framework, we introduce the concept of a 
matrix-valued, 0-conditionally positive definite function (5-CPDF) of order 
m; this concept generalizes the scalar-valued version introduced by Gelfand 
and Vilenkin [9] and refined by Madych and Nelson [16]. In ?1, we establish 
notation, discuss admissible subspaces, and define matrix-valued order-m 5- 
CPDFs. At the beginning of ?2, we describe in detail the generalized Hermite 
interpolation problems that we are dealing with; the interpolants used in these 
problems are linear combinations of convolutions of the vector-valued, data- 
generating distributions with an order-mr, matrix-valued 5-CPDF. It is also in 
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?2 that we provide a unifying framework for solving such problems. The linch- 
pin of that framework is Theorem 2.3, which establishes that these problems are 
well poised under two sets of conditions: mild restrictions on the dimensions 
of certain spaces and the condition that the order-m, matrix-valued 5-CPDF 
be a strictly f5-CPDF. (See ? 1.) 

Second, we wish to use our framework to demonstrate that a broad class of 
generalized Hermite interpolation problems are well poised. Essentially, this 
entails establishing the existence of an order-m strictly f5-CPD function for 
a given 5 . The first step in carrying out this task is to obtain explicit forms 
for order-m matrix-valued CPDFs. (CPDF = 5-CPDF when e is the whole 
space; i.e., there are no side conditions.) This we do in ?3. In ?4, we obtain 
an explicit characterization of certain distributions that play a very important 
role in our work. These dstributions are related to admissible subspacces of 
smooth functions that satisfy homogeneous, constant-coefficient partial differ- 
ential equations. In ?5, we characterize order-m matrix-valued CPDFs that 
are also 5-CPDFs, provided e is one of the admissible spaces treated in ?4. 
In ?6, we give sufficient conditions for an order-m Q5-CPDF to be strictly 5- 
CPD, again assuming that e is as in ?4. Indeed, we give explicit methods for 
constructing such functions, and thereby both establish that a wide class of gen- 
eralized Hermite interpolation problems, including those studied in [26], are 
well poised, and provide a variety of tools for solving Hermite interpolation 
problems in the presence of side conditions. In particular, in ?6 we construct 
the "divergence-free RBF" discussed in our example above. 

Third, we will use our distribution-theoretic framework to study the stabil- 
ity of certain mutivariate Hermite interpolation problems. In particular, in ?7 
we obtain estimates on the norm of the inverse of the scattered-data interpola- 
tion matrix that is associated with interpolating values and certain multiples of 
directional derivatives for a scalar-valued function defined on Rs. The main 
result is that these estimates are governed by the same parameters as in the case 
of ordinary interpolation via radial basis functions [19, 20]. Namely, the norm 
of the inverse depends on the particular RBF, the dimension, and the minimal 
separation of the Hermite data, but not on the number or distribution of points. 
Indeed, the results in ?7 contain one of the central estimates in [20] as a special 
case. 

1. PRELIMINARIES 

Admissible spaces. We denote by F, the set of all C?? vector-valued functions 
f: Rs -+ C'?, and by X the space of all n-component "column-vector" distri- 
butions compactly supported in Rs. If ? e ?,, then let +(x)* = q(x)T be the 
conjugate transpose of 0q(x) . The linear functional corresponding to the distri- 
bution 0(x) acts on f E F, via fR, (/(x)* f(x) dsx = E I> fRs qj (x)fj (x) dsx, 
where the f, 's and qj's are the components of f and q. 

Fourier transforms and convolutions will play an important role in what fol- 
lows. As usual, we define the Fourier transform of a function or (tempered) 
distribution to be f(4) := fRs f(x)e-ix 4 dsx . It is useful to note that com- 
pactly supported distributions are tempered and that the Fourier transform of 
a compactly supported distribution is an analytic function [8, p. 130; 25, 
p. 307]. Let (0 be a scalar-valued distribution, and let f E Fn. We define 



666 F. J. NARCOWICH AND J. D. WARD 

the convolution f * (o component-wise, with the jth component being 
[f * io(x)]j := fRs fj(x - y)(o(y) dsy. It follows from [25, p. 287] that f * (0 

is in F. 
To incorporate side conditions, we will need to work with certain subspaces 

of F, which we now define. 

Definition 1.1. Let Q5 denote a subspace of tn for which the following holds: 
If g is in 05 and (o is an arbitrary scalar-valued distribution in F,', then g * ( 
is in 0. We shall call such spaces admissible. 

Any admissible space e is translation invariant. Let (#x' (x) = 5(x - x') . If 
g is in e then so is g(x - x') = g * rpx . Although we will not prove it here, 
one can show that a translation invariant subspace of F, that is also closed in 
the C?? topology is admissible. 

For much of the paper, we will be concerned with admissible subspaces aris- 
ing as kernels of constant-coefficient differential operators. 

Definition 1.2. For an integer v > 0, let B1 (x), . .. , BV,(x) be Cn -valued poly- 
nomials defined on RS and having degree d. Define the space 

OB = I 9 E Fn IBj (0)*g 9_ O, i = I1, ... - VI, where 9 = (0x, , .., As). 

These spaces are admissible because Bj(9)*(g * (p) = (Bj(a)*g) * ( = 0 . (See 
[25, p. 287].) 

If one takes all of the Bj's to be identically 0, then one has the space Fn. 
When v = 1 and n = 3, we may take B1(x) = (xi x2 x3)T. For this 
case, 5B iS simply 5div- More generally, one can show that the integrability 
conditions required for a p-form [7, ?3.6] on Rs to be closed [7, p. 67] can be 
formulated using the coefficients of the p-form and an appropriate 5B . 

d-linearly independent distributions. We suppose that data is generated by 
applying a finite number of compactly supported distributions to a function 
f E n. More precisely, let {I$j(x)} N= be a linearly independent subset of Fn', 
which is the space of n-component "column-vector" distributions compactly 
supported in Rs, and assume that we are given data in the form 

(1.1) | Qj(x)*f(x)dsx = dj, j = 1, ...,N, 

where the dj 's are scalars and 0(x)* = 0(x) is the conjugate transpose of 
0$(x) . 

Recall that when dealing with the example discussed in the introduction, we 
required that the distributions used be linearly independent when restricted to 
the space Odiv- This restriction is needed to avoid redundant data. In the 
general case, we will also require that the distributions that generate the data 
set must be compatible with the side conditions imposed. To accommodate 
this need for compatibility, we will say that the set {qj(x)}Nf 1 is d-linearly 
independent if the set {qj(x) 01If= is linearly independent. 

Let 7'snl be all Cn-valued polynomials on Rs having degree m - 1 or 
less. To deal with interpolation problems requiring polynomial reproduction, 
we have to introduce the following subspaces of Fn 

(1.2) gn, m (e5) = E j O(x)*p(x) dsx = 0 for all p E 7rsn noe 
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if m > 1. When m=O,weset fo(W) :=n 9. 

Several remarks are in order. When fi = Fn, we will write ,n m for 
From (1.2), note that if we have that b E Fn,m, then we also have 

E Fn, m (@); consequently, 

(1.3) t m(O) D t,m- 

Finally, we note that the scalar-valued versions of these spaces were introduced 
by Madych and Nelson [16]. 

Matrix-valued 5-CPDFs of order m. We now introduce the class of functions 
that will be used to generate our interpolants. 

Definition 1.3. Let h(x) be an n x n matrix whose components are in C (RS) 
and whose columns are in an admissible space 5. In addition, we require that 
h(x)* = h(-x) for all x e Rs . We will say that h is an order-m 0-conditionally 
positive definite (%-CPD) n x n matrix-valued function if 

I (x)*(h * q)(x) dsx > 0, 

(1.4) where [h * q(x)]j = J hj,(X - Y)k(y) dS y, 
k=1 

for all 0 E Fn m (e). Moreover, we will say that such an h is strictly 5-CPD 
if equality in (1.4) implies that fRs O(x)*g(x) dsx = 0 for all g E 05. 

Remark 1.4. We point out that when m = 0, the distributions used in (1.4) are 
independent of X , and the only restriction on h involving e is that its columns 
belong to 05. In case e = gn, we will write "CPD" rather than %-CPD. Also, 
because ,; m(e) 2D?n m, every order-m 0-CPD is also an order-m CPD. 

All our interpolants will be of the form h * 0/(x) + p(x), where ? will be 
assumed to be in Fn m(e) and p(x) will be taken to be a Csn-valued polynomial 
on Rs having degree m - 1 or less-i.e., p e 7zsn . Of course, precisely 
which 0 and which p should be chosen will depend on both the distributions 
generating the data set, on the data set itself, and on any side conditions one 
wishes to impose. Of course, when there are no side conditions, one may simply 
work in e = Fn itself. 

Matrix-valued f5-CPD functions generalize the notion of a scalar-valued CPD 
function, as defined in Gelfand and Vilenkin [9]. The definition that we have 
introduced here is directly related to the version of scalar-valued CPDFs worked 
out by Madych and Nelson [ 16]. The two formulations of scalar-valued CPDFs 
were shown to be equivalent [ 16]. Since the version in [ 16] fits our needs better 
than that in [9], we have based our own definition upon it. We will discuss 
examples of matrix-valued CPDFs in later sections, including ones that enable 
us to create "divergence-free" interpolants. 

2. GENERALIZED HERMITE INTERPOLATION PROBLEMS 

The problem of,Hermite interpolation with polynomial reproduction is ac- 
tually a family of problems, each of which depends on a nonnegative inte- 
ger m: 
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Problem 2.1. Given a 0-linearly independent set {1j(x)}IN C n, complex 
numbers dj, j =1,...,N, and an order-m, n x n matrix-valued 5-CPD 
function h, and letting 

' = Span({lj(x)}jIN) and f = 7/n'nm(2m ) 

find Y/ E 2v and p E 7irs,7- n ne such that h * V/ E e and 

(2.1) j (x) * ((h * v)(x) + p(x)) dsx = dj, 

for j = 1, ..., N. In addition, if for some polynomial Jp E 7s'j n ne and 
for j = 1, ... , N each dj = fRs kj(x)*fi(x) dsx, then we require that the only 
interpolant be p(x) = p3(x); that is, eg(x) = 0 above, and p is unique. 

It is clear that 5-CPD matrix-valued functions are central to our formu- 
lation of the generalized Hermite interpolation problem described above. In 
particular, the condition on a 15-CPDF h that h(x)* = h(-x) is important. 
Employing it, and standard results concerning convolution products involving 
distributions [25, p. 291], one obtains the following useful result, which will be 
used to show that certain interpolation matrices are selfadjoint. 

Lemma 2.2. If X and V/ are in n', and if h is a C??, n x n-matrix-valued 
function that satisfies h(x)* = h(-x), then 

(2.2) I VI(x)*(h * q)(x) dsx = I q(x)*(h * v))(x) dsx. 
Rs 

Proof. Following [25], we let f(x) := f(-x). We have 

IA V(x)*(h * 0)(x) dsx = > j V1(x)(hO,k * qk)(x) dsx. 
es j, k s 

It is a straightforward task to put the equation above into the form 

A l(x)* (h * )(x) dsx = , ( V * qO)(x)hk, j(x) dsx. 
2 ~~~~~~~~j, k 1 

By [25, Theorem 27.7, pp. 291-292], convolution is commutative for compactly 
supported distributions, and so t * (k = (k * q'/ . Using this in the last equation 
and restoring matrix notation yields (2.2). Alternatively, one may use a Fourier 
transform approach based on a cutoff function and the fact that if h has a 
Fourier transform h(4), then h(,) will be a selfadjoint matrix. U 

We will prove the following result, which will provide the framework for 
solving the class of interpolation problems described in Problem 2.1. 

Theorem 2.3. With the notation of Problem 2.1, if h is strictly 5-CPD, and 
if the dimension of /7Yif is equal to the dimension m' Of 7jsn n 0, then 
Problem 2.1 is well poised. 
Proof. Without loss of generality, we may assume that the distributions Oj, 
j = 1, ... , N- m', form a basis for > and that v := Span({+I}jIN m,+l) 
?/'1/ . (If this is not the case, simply pick a basis for 7 and complete it to a 
basis for Y in the usual way. In carrying this out, one may have to use linear 
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combinations of the dj 's.) Consequently, we can reformulate the first N- ml 
equations in (2.1) this way: 

(2.3) j q$(x)*(h * yi)(x) dsx = dj, j = 1 , N - m'. 

If we expand qi E t in terms of the basis N =n{q1}N , we get jy = Efjn'c1q$1. 

The equations above turn into the matrix equation Ac = d, with Aj,k = 

fRs qj$(x)*(h * kk)(x) dsx . Note that Lemma 2.2 implies that Aj,k = Ak,j, so 
A is selfadjoint. In fact, we will show that A is positive definite. Consider the 
quadratic form 

N-m' 

c*Ac =] q(x)*(h * v,)(x)dsx, where qV = S CjbjE e n m(6). 
j=1 

From (1.4), we have that the right side of the equation above is nonnegative. 
But can c*Ac = 0? For that to happen, we must have that Ac = 0. We would 
then have fRs y/(x)* (h * y/)(x) dsx = 0, which, when put together with the fact 
that h is a strictly 5-CPD matrix-valued function, yields q4e = 0. Since 

_j I l is 0-linearly independent, the coefficients cj must all vanish. Thus, 
c = 0 and A is positive definite, and, consequently, invertible. Hence, we are 
able to uniquely solve (2.3) for qi. Furthermore, as we remarked earlier, the 
fact that h is a 0-CPD matrix-valued function implies that h * qi, which is a 
sum of columns of h convolved with scalar-valued distributions, is in e . 

There still remains the question of whether one can find a p that satisfies the 
equations in (2.1) not covered in (2.3). Obviously, we can find ,v so that the 
equations in (2.1) are solved for j = 1, . .. , N - m'. The remaining equations 
have the form 

(2.4) jq$j(x)*p(x)dsx = dj, j = N- m'+ 1, ..., N, 

where dj = dj - fRs 5j(x)*(h * y,)(x)dsx, j = N - m',..., N, are known. 
Standard duality arguments and the assumption that dim(2//) = m' = 
dim( 7rs,' nl n e) can be employed to show that there is a unique p E rns-n n e 
that solves the equations in (2.4). o 

We now state a proposition that was established in proving Theorem 2.3. 

Proposition 2.4. Let {$j}lMI be a 0-linearly independent subset of the space 
rn m(6). If h is an order-m, n x n matrix-valued 5-CPD function, then the 

matrix A, with entries 

(2.5) Aj,k = j )(x) *(h * k)(x) dsx, 

is selfadjoint and nonnegative. If h is strictly 5-CPD as well, then the matrix 
A is also positive definite. 

Remark 2.5. Theorem 2.3 is directed at solving Problem 2. 1. We want to point 
out that, at least in one other case, a straight interpolation problem involving no 
polynomial reproduction can be solved. Suppose that the data set is generated 
by N- 1 distributions in n' m and by one other distribution that is merely 
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in K'. As usual, label these qj$, with the one not in n m being ON. Let h 
be strictly 5-CPD. Form the matrix A as in (2.5) above. If AN, N < 0, then 
A is invertible. 

To see this, observe that the matrix A is selfadjoint. By Proposition 2.4, A 
satisfies c*Ac > 0 when the Nth component of c is 0-i.e., c is orthogonal 
to eN = (0, ... , 1)T. The Rayleigh-Ritz procedure then implies that A has at 
least N - 1 positive eigenvalues. On the other hand, eNAeN < 0. A second 
application of the Rayleigh-Ritz procedure then shows that A has at least one 
negative eigenvalue. Combining these statements, one sees that A has N - 1 
positive eigenvalues and 1 negative eigenvalue, and so A is invertible. O 

Although the situation described above seems quite specialized, it is not all 
that uncommon. For example, when n = m = 1 and e = F,, the space 
7sfz l n e = 1sl is a one-dimensional space. The N-dimensional space of 
distributions generating the data set is either a subspace of Fl" 0 or it has a 
basis with N - 1 distributions in , 0 and one not in the space. A will 
be invertible if that one distribution is such that AN, N < 0, something that 
happens in standard interpolation using the Hardy multiquadrics. 

3. CONDITIONALLY POSITIVE DEFINITE MATRIX-VALUED FUNCTIONS 

We now turn to a discussion of CPD n x n matrix-valued functions. This 
is the case where e = Fn; there are no side conditions on the vector field that 
we want to interpolate. Treating this case will be helpful in dealing with the 
case in which e is a proper subspace of Fn. Indeed, by Remark 1.4, an order- 
m 5-CPD matrix-valued function is an order-m CPD, so knowing a class of 
order-m CPDFs is an important step in constructing a class of order-m 5-CPD 
matrix-valued functions. 

The starting point for our discussion of matrix-valued CPDs is the Madych- 
Nelson version of the theory of order-m, continuous CPD scalar-valued func- 
tions; this is found in [16]. Concerning notation, we recall that when e = en 5 
the spaces 7rJs,nl n e = 7rsm'n; the distributions in Fnl m annihilate all poly- 
nomials in 7rs-nl . Also, here and throughout the paper we will use standard 
multi-index notation; see [8, ? 1.1]. We are now ready to prove the result below, 
which will allow us to freely use Fourier transforms. 

Proposition 3.1. If h is a C?(Rs), n x n CPD matrix-valued function, then 
the entries of h have polynomial growth, and therefore h may be regarded as 
a tempered distribution. Moreover, h, the Fourier transform of h, exists in the 
sense of tempered distributions. 
Proof. Let c E Cn , and set h,(x) c*h(x)c. It is clear that h, is C??, and 
that 

L 
0(x)(hc * 0)(x) dsx = L (c+(x))*[h * (cq)](x) dsx > 0 

for every C?? compactly supported function +(x) in Fl,m' because cO E 

tn, m . Since +(x) is in both C? (Rs) and F," m 5 it satisfies the conditions 
required for q to be in the space g2m [16, equation (2.10)], which comprises 
all compactly supported C?? functions w(x) such that 

xa%(x) dsx =0 for all jai < m. 
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By the remark following (2.12) in [16], we have that h, is a continuous order-m 
CPD function. When m = 0, then h, is a (Bochner) positive definite function 
and is consequently bounded. When m > 0, Corollary 2.3 in [16] implies 
that h, has polynomial growth. In either case, h, is seen to be a tempered 
distribution [25, p. 274]. In the usual way, one can write the entries in h as 
linear combinations of h,'s with various c's: 

hj, k = 1hc + ihe - (I + i)(hey + he), where c = e1 + ek and c = ei - iek. 

Consequently, the hj,k 's have polynomial growth and are therefore tempered 
distributions. That tempered distributions have Fourier transforms is well 
known [8, p. 98; 25, p. 275]. o 

We wish to construct a class of CPD matrix-valued functions analogous to the 
scalar-valued CPD functions discussed in [16, ?2]. The construction requires 
certain matrix-valued measures, which are special cases of the operator-valued 
measures discussed by Berberian [2, p. 6]. 

-Let 1W be the Borel subsets of RIS, and let n be the set of nonnegative 
definite n x n selfadjoint matrices. A function ,u: ,W -n , that is additive 
and continuous will be termed an n x n selfadjoint, positive matrix-valued, 
Borel measure. We remark that if c E Cn , then 4uc(.) = c*1u(.)c defines a Borel 
measure on Rs. As was the case for h, the entries of ,u can be written as linear 
combinations of Jtc's: 

j,k = 2 + -(1 + i)(iUe3 +Lek)} where c = ej + ek and e = ej - iek. 

The set of all such measures has a natural partial ordering. We will say that 
p, > I if for every A E . the difference u(A) - je(A) is in 9 . Because 
measures are often given in "differential form," we will also write dyL > d,u to 
mean , > ,i. We are now ready to state our next result. 

Theorem 3.2. Let dy(u) be an n x n selfadjoint, positive matrix-valued, Borel 
measure defined on Rs5\{0}, and suppose that frj 11 <1 I xi dy, u) is finite for all 
j ? 2m, and also that ,f,,>I j1k dju(4) is finite for all k. In addition, let 
{ay}17r<2m be a set of n x n selfadjoint matrices labeled by the multi-index y, 
and satisfying the condition that for every finite subset {cy}IyI<m in C'n 

(3.1) E Cj aca,+fcCa>O0. 
Ial=m lfll=m 

Then, 

(3.2) h(x) e,x- , (ix d/(4)+ E (ix) 

[s e 
r=O 

i 
r 

du) y+<2m is a CPD n x n matrix-valuedfunction. 
Proof. It is clear that h(x)* = h(-x). Because dyt decays fast enough to 
support all powers of 11, one may freely differentiate under the integral sign, 
so h is infinitely differentiable. Let X E t m' and suppose that in addition 
q is C??. (In the notation of [16, equation (2.10)], each component of q, 
namely q$j, is in 2m, the space of all compactly supported C?? functions 
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whose power moments vanish to order m - 1 .) A straightforward application 
of Fubini's theorem yields 

I q(x)* (h * q)(x) dsx 
s 

= J () A4+4 

2m-1I [i(X-y) 

r=O LS ?9{JR5kIR5 a j(x) r! J(Y)dYdX} aI (,) 

+ Z Z ay {J J X(x) y[ Y k(y)dsyd dsx 
lyl?2mj,k=l 

Because q E Fn m, all integrals of the form fRs YYq$k (y) dsy or fRs x Yqj (x) dsx 
vanish. Taking this into account in the last equation, and using 

(0)IYI J xyf(x) dsx = oYf(O), 

we see that 

L q(x)*(h * $)(x) dsx 

(3.3) + a E E {j q$sxx) a! d JR5 /3! s} 
IjaI=m IflI=m j,k=1 

duO($(O '~(f Olq$O)a 
= IRS$(~)*d~(~)$(~) Z LI cW r a~+fl RI 

IcLI=m flI=m { a }/ 

We remark that the C?? distributions in Fn, m are dense in that space. Conse- 
quently, taking limits in the last equation implies that (3.3) holds for all q in 
tn', m. From our assumptions on d,u and ay, it is also clear that the right side 
above is nonnegative and that h is a matrix-valued CPD function. 5 

Notice that in (3.2) we have " ix " rather than " -ix ," which is what appears 
in the scalar case treated in [16]. The reason for this is that, to accommodate 
the need for matrix multiplication, our definition of matrix-valued CPD uses 
convolution in a slightly different way than in [16] or [9]. In the scalar case, 
it is easy to show that the definitions are equivalent. In fact, if h(x) is a 
matrix-valued CPDF, one can show that h(-x) is also a CPDF. 

The form of the matrix-valued CPDF given in (3.2) will be used as a guide 
in constructing matrix-valued 5-CPDFs for the spaces ?5B introduced in ? 1. 

4. A CHARACTERIZATION OF CERTAIN COMPACTLY SUPPORTED DISTRIBUTIONS 

Recall that if B1,..., B, are in 7sn , then we define ?5B via 

(4.1) O?B ={g E FnlBj()*g =O j = 1,..., V}I 
where a = (o, ...,xs) 
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In order to construct examples of matrix-valued 5-CPDFs when the admissi- 
ble space has the form (4.1), we need to characterize the compactly supported 
distributions in Fn m(6B)- 

Theorem 4.1. A compactly supported distribution s is in , m( B) if and only 
if there are compactly supported, scalar-valued distributions a1 (x), a, (x) 
belonging to ' and a compactly supported distribution I0m E ,,n m(4) := ,n 
such that X, the Fourier transform of 0, has the form 

(4.2) q$(-) = j ( )Bj (- i) + q$rnQ )- 
j=1 

Proof. It is straightforward to show that if p and q are in 7rsm, then the 
sesquilinear form 

(4.3) (p, q) := [q(ax)]*p(O) = > [Oaq(0)I*aEp(0) a! 
lal<m- 1 

defines an inner product on 7tsnl . Let f be a C?? function, and let Tm -fI 
be the order- (m - 1) Taylor polynomial for f . From (4.1), it easily follows 
that p is in 7tsin n'?B if and only if, for j = 1,..., v and Iai < m - 1, 

(4.4) (p, Bj,a) = 0, where Bj,a(X) := Tm-i[XaBj(X)]. 

Thus, we have that 

(4.5) p E 7s-n n 23B if and only if p e {Bj,a}'. 

On the other hand, if q is in Fn, m(O5B), then we have 

| *pdsx = Z *xa dsx )0p() =0. 

a~~~~ 

Since ( i)YI RS xYq(x) dsx = A70(O) , we can rewrite the left side of the last 
equation as 

A[ iIYIaY(0)]*aap(O) -: (X, Tm_V[X)I) 

I R S~~~~~ ~a! 

from which it follows that k E 'n ,m(3B) if and only if (p(x), Tm4q [$(ix)]) = 0 
for all p E 7rs7-n ne . The upshot is that Tm_I [q(ix)] is orthogonal to the whole 
space, 7Zsnl n 5B = {Bj,} . Consequently, Tm I[0q(iX)] e Span(Bj,a), and 

so we can find constants a! Ca, a such that 

Tm i[ I(iX)] = a! cj,aBj,a(X). 
j=1 lal<m-1 

Using (4.4), we can rewrite this as 

Tm_,[q(iX)] = Tm-i [E (at ( Cj)I acXa) Bj1(x)j 
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Let C be the Fourier transform of a compactly supported distribution that sat- 
isfies the condition that O,aJ (0) = cj,IaI < m - 1. The existence of such dis- 
tributions follows from standard arguments; see [9]. Inserting &j as a replace- 
ment for the polynomial expression in large parentheses yields Tm- i kb(ix)] = 

Tmi[Z>i I1(-ix)Bj(x)]. From this, we see that + is in tn m(5B) if and 
only if 

(4.6) Tmi [4k(4)-Z &i(4)Bi(i4)j = 0. 

Set Omm(x) = q$(x) - Ej Bj(-&,)aj(x). It is clear that O$m is a compactly 
supported distribution on F, that O$m(,) = Ej- E (4)Bj(- i), and, from 
(4.6), that Tmi [I$m()] = 0. This last equation implies that qOm is in , m . 

Thus, q is in F m(2B) if and only if it has the form (4.2). El 

In the course of proving the last result, we produced a characterization of all 
polynomials in gs7' nl n B . This characterization is given in (4.5) above and is 
restated in the corollary below for future reference. 

Corollary 4.2. Let 3B be as in (4.1), let TmI[f] be the (m - 1)-degree Tay- 
lor polynomial for an analytic function f, and let rs-n be endowed with 
the inner product (4.3). A polynomial p is in 7ts,n n B if and only if 
P E {Tm_i[XaBj(X)]}I 

In addition to the result stated in Corollary 4.2, the proof of Theorem 4.1 pro- 
vides us with a simple but useful fact concerning the distributions constructed 
there. 

Corollary 4.3. Let !B be as in (4.1). With the notation of Theorem 4.1, 
the compactly supported distribution q$B(x) : JJ Bj(-a,)uj(x) satisfies 

fRs 4B(x)*g(x) dsx = 0 for all g E 5B . 

Proof. By breaking qB and g into their components and integrating by parts, 
one sees that 

A q(x) )*g( x) dsx = 7 IS q(x)Bj(ax)*g(x) dsx. 
,s ~~~~~j= 1 

From (4.1), each term in the sum on the right above vanishes. 0 

5. 6-CONDITIONALLY POSITIVE DEFINITE MATRIX-VALUED FUNCTIONS 

We wish to explore two questions that concern the class of admissible sub- 
spaces, 5B. First, which matrix-valued CPDFs having the form (3.2) are ac- 
tually 5-CPDFs? Second, under what conditions will they be strictly 5-CPD? 
We will discuss the first question in this section, and the second in the next. 

The result that follows is a surprisingly simple condition for a CPDF to be a 
5-CPDF, provided of course that the admissible space is 5B. 

Theorem 5.1. Let 5B be as in (4.1). If h(x) is a CPD matrix-valued function 
and if the columns of h are in 5B, then h is a 5-CPD matrix-valuedfunction. 
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Proof. By Theorem 4.1, one has that every q E n m(5B) can be split into the 
sum 

(5.1) - = OB + Om, 

where Om E Fn m and qB is as in Corollary 4.3. Using Lemma 2.2 and (5.1), 
one has 

O )(x)*h * q(x) dsx 

(5.2) = IOSm (x))*h * )m (X) dsx 

+ j (xB(X) h * qB (x) dsx + 29{ J| (x) Rh * qm(x) dsx}- 

Since h * 0 = Zk hk * q$k is the sum of convolutions of functions in 5B with 
compactly supported distributions (the columns hk are assumed to be in E5B), 
h * q) is in d. Consequently, we see from Corollary 4.3 that fRs q$B(x)*h * 

gm(x) dsx = 0. Thus, in (5.2) all the terms containing qB vanish, and so (5.2) 
becomes 

(5.3) J (x)*h * q(x) dsx= j (m(X)*h *Om$(x)dsx. 

Finally, by the fact that h is an order-m CPD, the right side of (5.3) is non- 
negative, which implies that h is a 5-CPDF. o 

As it stands, the theorem above does not provide a means for constructing 
5-CPD matrix-valued functions. However, we may combine it with the form 
for a matrix-valued CPDF given in Theorem 3.2 to obtain explicit expressions 
for such functions. 

Corollary 5.2. Adopt the notation and assumptions listed in Theorem 3.2, let 
O3B be as in (4.1), and suppose that Bj satisfies 

(2m- 1 (iX . ~)r V 

(5.4) Bj ()) { E r! } = E k P&(X, )Bk(-i,)* 
r=O k=1 

whenever m > 1. Here, Pk(x, X ) is a polynomial in x and 4. If the pos- 
itive, n x n matrix-valued measure dp!(,) satisfies Bj(- i,)* dy (c) 0_ for 
j = 1, ... , v, and if, in addition, the columns of the matrix-valued polynomial 

h2m(X) ZEy?1<2m a7(ix)7/(y!) are in X, then h(x) is a 3-CPD matrix-valued 
function. 
Proof. Note that the measure in (3.2) decays fast enough at infinity for us to 
interchange the integral in (3.2) and any derivative. Using this fact, (5.4), 
and the assumption that the columns of h2m are in 3B, we have that, for 

j (iX. )r 

Bj(9)*h(x) Bj(ax)* [eix rm 
1 ( + Bj(c 

r=O rP J 

= eix-~Bj(-i~)* - Z1Pk (Xi , k(i)d 
JR~~~ L ~k=i1 
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Since Bj(- i,)* d() 0 O, the right side of the last equation is identically 
0. Consequently, Bj(o)*h(x) 0 for j = 1, ... , v, and so h E d5. From 
Theorem 5. 1, h is a 5-CPD matrix-valued function. 5 

Remark 5.3. When m = 0, then (5.4) is vacuous, and there are no restrictions 
on the Bj's. Probably the most useful criterion for (5.4) holding for general 
m > 1 is the following: If each Bj is a homogeneous polynomial, then (5.4) 
holds. Consequently, Corollary 5.2 applies for such a set of Bj 's. 

Proof. To see this, observe that for any single-variable polynomial p, the chain 
rule implies that 2xp,(ix ) - (,(kkl)(ix )(i4)a, where ,(l) is the lth deriva- 
tive of p. Since a homogeneous polynomial in Ax is a linear combination of 
terms of the form Ax with Iaj being fixed, and since the Bj 's are homoge- 
neous, we have Bj(a)*1p(ix *,) = p(')(ix .,)Bj(- i,)*, from which (5.4) follows 
immediately. o 

6. STRICTLY 6-CONDITIONALLY POSITIVE DEFINITE 

MATRIX-VALUED FUNCTIONS 

Earlier, we posed two questions, the first of which concerned which CPDFs 
of the form (3.2) were 5-CPDFs when the admissible space was 5B. This 
we feel that we have satisfactorily answered with the last three results. We now 
wish to address the second question, which concerns the issue of when a 5-CPD 
matrix-valued function is strictly 5-CPD. 

To do this, we need to deal with notation and terminology. First, recall that 
we write d,i > d,i for matrix-valued measures, provided 4u(A) - 4(A) is a 
nonnegative definite matrix for every Borel set A c Rs. Second, let 5n denote 
the space of Schwartz functions [8, 25] in Fn . We will say that the intersection 
5n nf EB is weakly sequentially dense in 5B if for every g in ?5B there is a 
sequence of functions gk E 5n n O?B such that, for every q E Fn', 

l[im q$*(x)gk(x) dsx = L.0* (x)g(x) dsx. 
k--+oo ,sis 

For each fixed E Rs, let 11(4) be the orthogonal projection (relative to Cn) 
onto {Bi (- i), ... , Bv (- i,) }I . We have the following result. 

Theorem 6.1. Let ?5B and h satisfy the assumptions of Corollary 5.2, and let 
ESBfnln be weakly sequentially dense in B - In addition, assume that the rank of 
f1(4) vanishes only on sets of Lebesgue measure 0. If the positive matrix-valued 
Borel measure dii(,) in (3.2) satisfies 

(6.1 ) dy,(E,) > rl(4) d i1(4) 

where dil is a positive scalar-valued Borel measure that has support containing 
an open subset of Rs, then h is a strictly d5-CPD matrix-valued function. 
Proof. Since h satisfies the conditions of Corollary 5.2, h is a 5-CPDF. From 
the proof of Theorem 5.1, we recall that every q E 8n m!(3B) has the decom- 
position given in (5.1), and that fRS q(x)*h * +(x) dsx satisfies (5.3), where 
q$m E n,nm- Since h is of the form (3.2), we have that (3.3) holds with q 
replaced by $m . By the assumptions on the polynomial part in (3.3), the asso- 
ciated quadratic form is nonnegative. Putting all of this together, we arrive at 
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this inequality: 

( I (x)*h * q(x) dsx = j q (x)* h * Om (x) dsx 

(6.2) R 
Om 

s 

Combining (6.1) with (6.2) yields 

(6.3) I q$('* dy O(m)$() > Im| () d1(l) 

To show that h is strictly CPD, we need to show that if the left side of (6.3) 
vanishes, then ')I5B = 0. Since q = qB + Om, and since qBIl,B = 0, we need 
only show that Om lB = 0. Clearly, if the left side of (6.3) is 0, then we have 
that the right side, which is nonnegative, is also 0; that is, we have that 

(6.4) j (4) ditl(4) = 0. 

Since the support of d,t includes an open set in Rs , and since O$m (4)*Ol(m)qm(4) 
> 0 for every 4 E Rs, we have that 

= 0 

on some open subset X of RS. This and the fact that II is an orthogonal 
projection imply that 

(6.5) 044m4 for all 4 E vY, 

and so, on X, q$m(4) is in the span of the Bj(-iE)'s. Pick a point 40 in Y 
at which the dimension of Span{Bl(-it), ... , B,(-i4)} is a maximum, vo. 
At 40, one may select a basis for the span of the Bj(-iXo)'s. After relabel- 
ing (if necessary), we take this basis to be {B1(-iXo), ... , B>,0(-iXo)}. Recall 
that this happens if and only if a vo x vo subdeterminant of the matrix with 
columns B1 (- ito), . . . , Bvo (- ito) is not 0 . A straightforward continuity argu- 
ment shows that, for all 4's in a small neighborhood of XO, the same subdeter- 
minant of the matrix with columns B1 (- it), .. . , Bv, (- i4) will be nonvanish- 
ing. Thus, in that small neighborhood of XO the set {B I(- i4), ... , Bo (_(- i4)} 
is a basis for the span of all the BJ 's. We now restrict our attention to the 
intersection of the small neighborhood of XO with X. Indeed, by choosing Y 
sufficiently small to begin with, we may assume that this intersection coincides 
with X. 

Cramer's rule can be used to show that on X we have 

(6.6) r=E Bj(i)Bj(-) 
]=l I G ()' 

where z4) is a polynomial in 4, and the Tj 's are linear combinations of 
polynomials multiplying the components of qOm (,). Since these components are 
entire functions in , the Tj(4) 's are also entire functions in 4. Multiplying 
both sides of (6.6) by Zi(4) gives 

i/O 

(6.7) (4)$m(4) = EZTj()Bj(-i4) for all 4 eX. 
j=l 
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Both sides of (6.7) are entire functions in ; their agreeing on Y is sufficient 
to guarantee that they are equal for all 4 in Cs, and of course in R1S . Since (4) 
is a polynomial that is not identically 0, it can only vanish on sets of Lebesgue 
measure 0. Consequently, (6.6) holds except for sets of Lebesgue measure 0. 

Simple Fourier transform manipulations imply that any Schwartz function 
g will be in O5B if and only if Bj(- i)*Q(4) 0_ for all 4 E RIS. Using this 
and the fact that (6.6) holds for almost every 4, we get 

Om(4) g()= 0, 

except on sets of Lebesgue measure 0. Integrating both sides and using Parse- 
val's relation-really, the definition of the Fourier transform of a distribution 
in this case-, we obtain 

(6.8) I om(x)*g(x)dsx =O for all g E en fl. 
lRs 

Using the fact that !3B n5Y is weakly sequentially dense in eJB, one may easily 
show that (6.8) holds for all g E 5B . It therefore follows that Om Io5, = 0, which 
is precisely what we needed in order to prove that h is strictly 5-CPD. Dl 

Remark 6.2. The admissible spaces F, and 0div satisfy the conditions of Theo- 
rem 6.1. First, each of these spaces is generated by homogeneous polynomials. 
In the case of F, these may be taken to be identically 0. For the space 5div 

the polynomial is linear. By Remark 5.3, any admissible 5B with the Bj 's 
being homogeneous satisfies the part of Theorem 6.1 that requires that the con- 
ditions of Corollary 5.2 be satisfied. Second, in all of them 5, n flB is weakly 
sequentially dense. For OB = F, the compactly supported Cc? functions are 
obviously dense in F in the topology of COO topology. Since 5' includes 
all compactly supported C" functions, 5', n fn is weakly sequentially dense 
in Si ,. For Odiv, one may do the following. When s = n = 3, we have that 
g = V x a for a COO vector field a(x). Pick a C?? cutoff function XR(X) that 
is 0 outside of a ball centered at the origin and having radius R, and 1 inside 
a ball centered at the origin and having radius R/2. It is clear that the sequence 
gk(x) = V x {Xk(x)a(x)} is a compactly supported sequence that converges to 
g not only weakly, but in the C?? sense. For other s or for p-forms, one may 
use an argument employing the converse of the Poincare lemma [7, p. 27]. 

As an example of our theory, let us construct an order-0 5-CPD matrix- 
valued function in the case where 3B = Odiv. By the previous remark, the 
conditions in Theorem 6.1 on the admissible space 0div are met. For this space, 
we have s = n = 3, v = l, and Bi (x) = B(x) = x . Obviously, B(-i,) = -i , 
and the projection onto {B(-i4)}l = {J}' is given by g(4) = I _ g11-2 T 

for all s : 0. We will simply take the polynomial part in (3.2) to be 0. For 
d/l(4), we may take 

(6.9) djA(4) = 1{1 112I - s T }e- IgI2I2/4t dk3 

where t is some positive real number and I is the identity matrix. It is straight- 
forward to show that 

(6.10) dy (,) > I11I2lI(&)e-"II124t d35 (47rt)312 
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and so dj satisfies (6.1). By Theorem 6.1, the function 

(6.11) h x3(X) = [ eix4{II12I _ , T}e-HI 112/4t d34 
tR3 (47tt)372 

is a strictly 5-CPD of order 0. The integral in (6.1 1) can be done, yielding the 
following explicit formula for the "divergence-free" CPDF h3X3 

(6.12) h x3(x) = {(4t - 4t21lXll2)I + 4t2xxT}e_txIX112 

Of course, one can have s-dimensional divergence-free vector fields defined on 
RS. The s x s result corresponding to (6.12) is 

(6.13) hsxs(x) = {(2(s - 1)t - 4t211X12)I + 4t2XXT}eltllX112. 

When there are no side conditions-i.e., we are working in , itself- 
Theorem 6.1 provides us with the following result. 

Corollary 6.3. Let h be an order-m, matrix-valued CPDF having the form (3.2). 
If the positive matrix-valued Borel measure dy(u) in (3.2) satisfies dyu(4) > 
I dq(7), where I is the n x n identity matrix and d I is a positive scalar-valued 
Borel measure that has support containing an open subset of Rs, then h is a 
strictly CPD matrix-valued function. 

In the scalar case, the result above immediately reduces to the following one. 

Corollary 6.4. Let h be an order-m, scalar-valued CPDF having the form (3.2). 
If the positive scalar-valued Borel measure d,uy() in (3.2) has support containing 
an open subset of Rs, then h is a strictly CPD scalar-valued function. 

We remark that Corollary 6.4 and Theorem 2.3 imply that the class of Her- 
mite interpolation problems treated in [26] is well poised. In the next section, 
we will use the results developed above to study stability questions in specific 
problems. 

7. STABILITY ESTIMATES FOR MULTIVARIATE HERMITE INTERPOLATION 

In this section, we obtain estimates on the norm of the inverse of the inter- 
polation matrix that arises in a certain restricted class of Hermite interpolation 
problems. The main result is that these estimates are governed by the same pa- 
rameters as in the case of ordinary interpolation via radial basis functions [19, 
20]. Namely, the norm of the inverse depends on the particular RBF, the dimen- 
sion, and the minimal separation of the Hermite data, but not on the number 
or distribution of points. While the result itself covers only a restricted class 
of the Hermite interpolation problems that we have shown to be well poised, 
the methods employed in obtaining the result can be tailored to apply to other 
more general situations. 

The problem that we will address concerns norm estimates on the inverse of 
the interpolation matrix associated with interpolating values and certain multi- 
ples of directional derivatives for a scalar-valued function defined on Rs. For 
this interpolation problem, we have n = 1 , with the distributions generating the 
data taken to be 6-functions and directional deriatives of 5-functions. Specif- 
ically, let {4j} =N1 be N distinct points in Rs with minimum separation 2q, 
and set 

qj(x) :=c5(x-Cj) and qy :=vj.V* (x-Cj), 



680 F. J. NARCOWICH AND J. D. WARD 

for j = 1, ... , N. Here, each Vj E RW is an arbitrary vector having a fixed 
length L > 0; that is, 11v = L . We use the parameter " L " for the common 
length of the vj 's, rather than using unit vectors, for two reasons. First, in a 
physical problem the "units" will be easier to deal with, and, second, the choice 
of L can serve to precondition the interpolation matrix arising in the problem 
being addressed here. 

What shall we take for our CPDF? We will not require polynomial reproduc- 
tion, so we may take the order m to be 0. Recall that the radially symmetric, 
scaled Gaussian ht(x) = e-t1lxll has the representation 

(7.1) ht(x) =e-t11X11 =i e"x@djt(i), where dut():= e-IIXII24t ds ' 
iRs ~~~~~~~~~~~(47rt)s/2 

which is of the form (3.2) with measure dut and m = 0; it is thus an order-0 
CPDF. The Gaussians are important because of Schoenberg's characterization 
of all order-0, radially symmetric CPDFs in terms of integrals (in t) of them [23, 
Theorem 6]. In view of that importance, we will use ht as our CPDF; that is, we 
will employ it in creating the 2N x 2N interpolation matrix, At , for the problem 
described above. Our intent here is to demonstrate that IIAY 112 ? IA(t, q, L, s) 
for some function A that is independent of N. Once the bound for the matrix 
A-l1 has been obtained, bounds for matrices associated with other CPDFs can 
be found using ideas employed in [20]. 

The starting point for obtaining bounds on the matrix At1 is the observation 
that the interpolation matrix At, which is defined in (2.5), is positive definite. 
This follows from Proposition 2.4 and the fact that ht is strictly CPD. Estimat- 
ing IIA - 1Y' then amounts to getting a lower bound on the lowest eigenvalue of 
At, and then taking reciprocals. 

To estimate the lowest eigenvalue of At, we need to look at the quadratic 
form c*Atc. Here, we write c = (a, ... aN b1 ... bN)T. The first N 
components correspond to qj's, and the last N to Yj's. From (2.5), (3.3), 
and (7.1), we have that 

N 

(7.2) c*Atc =]| I6()12 dytu(4), where w = (aj q$ + bj yj). 
j=1 

We may put (7.2) into the form 

(7.3) c*Atc = II6)II25, 

where 11 K ,*ut indicates the usual norm in L2(4ut). (A similar convention will be 
used for L2 inner products.) If dvt(4) is any positive measure whose support 
contains an open subset of Rs, and if dvt(4) < dut(4), then c*Atc = II6AI1, > 

Ik(II,. Expanding I6)112 thus gives us 

N 

c*Atc ?> E (Thak(k, j)vt +bjbk ( jk, vt)v + ajbk (kIj)vt +bjak(&k , @l)vt). 

j,k=l 

Breaking up part of the sum above into terms for which j = k and terms for 
which j $& k, and using the inequality 21ab I < a12 + Ib12 in conjunction with 
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the last inequality, we arrive at the following lower bound for c*Atc: 

N / 

C*Atc > E laj12 - L l@jkk j/v1I- VP]' YIk/v1 yI'Ivt k#It ~ v 

(7.4) N= k-ij k/ 

+ E I bj 1 2 (1 1 W 
z 

(k ,)tl- ) vt| 

j=b y kIj k 

So far we have left dvt unspecified, except for the conditions imposed upon 
it earlier. Let us now choose dvt := it(4)ds4, where we assume that 0 < 

it(4) < e-I1112 14t/(47t)sl2 and that kt is compactly supported, with its support 
containing some open set in ]Rs . The inverse Fourier transform of Xt is Xt(x) . 
Since it is compactly supported, Xt(x) will be an entire function of x, and we 
may freely differentiate it. Using dvt = it(4) dsX and the definitions of qj 's 
and yj 's, one can easily show that 

(@kk kj)vt = e (k) t(4) dSX = (27r)sXt(4j - ) 

(k, @j)vt = e (i - k) ((v .4)(Vk )%t(4)dsX = -(27r)svjXt'(4j -k)Vk, 

@kk~ y'Iy~ = |ei( 

-Ck)Nj(Vj 

. ,)jt(4) dsX = 
(27r)svfTX(Cj 

- CO 

where x'(x) denotes the column vector representing the gradient of Xt and 
x'" (x) denotes a symmetric, s x s matrix representing the Hessian of Xt . If we 
use these expressions in (7.4), then we get 

N 
c*Atc > EZ(Ir)XIajI2 Xt(?)_E |/t(ji- _k)I- ZE IVTXi(k -_ j)lI 

j=1 t k#j k ) 

N ( 
+ Z(27r)slbjl2 - vT (O)Vj lk)Vk 

j=1 k:lj 

kJ 

Since llvjl = L, we have 

vit (Ck - )I| < LIIXt(4j - k)II 

and 

IVTX' (Cj - 4k)VkI < L2IIxt (4j -4k)Itl 

where 1 It denotes the appropriate vector or matrix norm in 12. Inserting these 
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norm inequalities in the preceding inequality yields 

N 

c*Atc > (2-) Zaj| ( IXt(j - - k)I- LIIX'(rk- j) I 
j=1 t kij k 

N O 

(7.5) + (21r)sIbj 2 -v7Xt(O)vj -E L- 41X (Cj k)I 
j=1 kij 

- ZLIx;(Cj - 40k)1}- 

The choice of 't (and, of course, Xt as well) is still restricted only by the 
requirements that 

e- 11112/4t 
(7.6) ? < xt(4) < (47rt)s/2 

and that 't be compactly supported with its support containing an open subset 
of Rs. We will now exhibit a one-parameter family of such functions. 

Recall the definition of the pth-order B-spline (of a single variable) Bp(u). 
If 28 I(u) denotes the characteristic function of [-1/2, 1/2], then 

9p3= %1 *.**** 

p-fold 

The tensor product spline is defined as Tp(Q) := IJk= 9p(4k), where 4k is the 
kth component of 4. From standard properties of Bp (see [3]), we see that 
Tp has these properties: 

(a) Tp is an even, piecewise polynomial function; 
(b) Tp(4) > 0 for every 4 in the s-cube -p/2 < 4k < p/2 and is zero 

elsewhere; 
(c) Tp(4) < Tp,(O) = Bp(O)S; 
(d) 7Tp = IJ sinc"(Xk); 
(e) Tp = {(27Q) s Hlk1 sincP (Xk)}A 

The equation in (e) above is the consequence of (d) and a Fourier transform 
identity. 

Lemma 7.1. Let p be any positive number, and set 

e-sP2/( 16p2t) 
(7.7 t c :-t - 

(l67f3tp293p(O)2)s/2' 

Each member of the family offunctions defined by 

xt,p(4) := (27rp)sct,pTp(pc) 

satisfies (7.6), is positive on the s-cube -p/(2p) < Xk < p/(2p), and is zero 
outside of this s-cube. The inverse Fourier transform of it, p is given by 

S 

(7.8) VXt, p (X) = Ct, P rj sincP (Xk/p), 

k=l 

where Xk denotes the kth component of x. 
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Proof. The result follows from combining the various properties of Tp listed 
above with the observation that the minimum of e-II 11I/4t on the s-cube de- 
scribed above occurs at Xk = ?p/(2p). *n 

We need to estimate the quantities found in (7.5), given that (7.8) is our 
choice for Xt. From (7.8), we can obtain all first and second partials of Xt, p . 
The first-order partials are 

(7.9) Ox,p p(x) = P Ct P sincP" (xj/p) sinc'(xj/p) 
17 

sincP(xk/p). 

We can differentiate (7.9) to obtain 

a_2 _t _ 
P 2Ct, p* - 

(7.10) Xi (x)= P 2 sincP(xj/p) sincP (xi/p) sinc'(xj/p) 

sinc'(xi/p) 1I sincP(xk/p) if i : j. 
k#i, i 

When i = j, we have this expression: 
(7.11) 

Xt, P (x) = P t {(p -1) sinc`-2(xj/p)[sinc'(xj/p)]2 

+ sincPl (xj/p) sinc" (xj/p)} I1r sincP(xk/p). 
k#j 

From (7.8)-(7. 11) and the properties of sinc(.), we can easily compute various 
derivatives of Xt, p at x = 0; the results of these computations are the following 
formulas: 

(7.12) Xt,p(0) = ct,p and 't 
P(0) =, Ox1 

(7.13) OXt,P (0) -Pt,P and a tP (0) 0 if i54j. 
aOx2 12p2 a x1O9x1 

The function sinc(.) plays a crucial role in our computations, and we need 
to estimate it and its derivatives up to second order. This we do in the next 
result. 

Lemma 7.2. There holds 

(7.14) I sinc~(v)I f I { < m1inl, 2 if l > 1= 

Proof. Using the Fourier integral representation for sinc(.), we have 

J1/2 <[1/2 _ 1 (1 
(7.15) Isinc() (v) < | uleiuvdu < lulIldu-= 1 ( -I. (7.15) slnc\v)1 - 

-~1/2 11/21+ \2 

Applying Leibniz's rule for the /th derivative of a product / times to v sinc(v) 
=2 sin(v/2) yields 

vsinc~'~(v)( )+Is(l-l)iU = (i)1 1 { sin(v/2), v in(' ()+ 1sinc(1 1 v, cos(v/2). 
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After rearranging terms, dividing by v, and taking absolute values in the last 
equation, we easily see that 

I sinc(')(v)l < 1 (I 11 1 1 sinc(l -)(v)I F[l lvi 
Using (7.15) with 1 -+ 1 - 1 to replace the numerator of the term on the far 
right, we get 

I sinc(') (v)i < Iv 1-22-. 
Combining (7.15) with the inequality above yields (7.14). 0 

A direct application of (7.14) to (7.8)-(7.1 1) yields these estimates for Xt,p 
and its first and second partials: 

(7.16) 
~(P k=fl 

mi 
I{ lXkl whr}] 

ll<2 

In (7.16), suppose that x : 0 and that maxk{lxkl} = lxklt. A standard argu- 
ment then impliesthat Ix4lI > lIlxl/VLs. If in (7.16) we use min{1, 2p/IXkl} I 1 
when k $& ko and we use min{1, 2p/jxkj} < 2p/jx4j < 2p,/ /sjIxj, then (7.16) 
becomes 

(7.17) Iaaxt,P(X)I < Ctp () [21 4j where 0 < lal < 2 and x $ 0. 

The derivative estimates in (7.17) can be used in combination with standard 
vector- and matrix-norm estimates to bound the gradient and Hessian of Xt, p. 

We state the estimates obtained in this way below. 

Lemma 7.3. If x :$ O, then 

( I/t,p(x)l < Ct,p[?]p 

(7.18) I [t,p(X)I < VSCt,p(P_)[x ]P, 

IX It/ p(X)I < SCt, p(P)2[1 F. 

The estimates in (7.18) and the values for Xt,p and its derivatives in (7.12) 
and (7.13) may be used together with the lower bound (7.5) for c*Atc to obtain 

c*Atc N 1 
27r)sct ?> Zlaj I2 1 - (2pvis)P[ l + pVsLp-1] E I } (27r)ct, P 

- 
j=1k:j Jli 

- kl 

N 2PL 2 

(7.19) + E 1b12 1b P _ pVsLp-1'(2pVs)P[1 +pVsLp-1] 
j=1 

k:lj II , Ckillp 

To estimate Ek(Ij( /Il j - Ckl P), repeat the "packing" argument employed in 
[19, p. 801 to get 

1 00 

E 1P < 3s En lsKn, 
k#~j IlC - Ckll n= 
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where Kn := sup{jjxIj-P: nq _ llxil < (n + l)q} and 2q is the minimal separa- 
tion distance for { j}NIl c Rs . Clearly, we have that Kn = (nq)-P. Using this 
above yields 

00 

kE4, 
l- kIi- k 3Sq Z nS=1P 

If we take p > s + 1, we see that the series on the right is bounded above by 
Zn>1 n-2 = 7t2/6, and so 

< (3SqP) 
72 

< 3s+1q-P 
k#Ij 

Using the inequality above in (7.19), taking p > s + 1, and factoring the coef- 
ficient of the bj 's, we arrive at the following inequality: 
(7.20) 

C*Ac N 

(27)sct > E laj2{1 - 3S+l(2pq-l1/s)P[1 +p/sLp1l} 

+Z EbjI2 fL2 {l 1- (12-pL1)3s+l(2pq- ls)P[l +pVs-Lp-l]}. 

It is clear that we are able to choose p > 0 so that 

(7.21) 12spL-1 < 1 and 3s+l(2pq-lvs,)P[l +ps-Lp-1] < 1/2. 

If we do so, then, from (7.20), the assumption that p > s + 1 , and the fact that 
s > 1, we easily see that 

(7.22) c*Atc 1 
(7.22) 

~~~(27r)sct, ?> 
IC2 

from which the theorem below follows immediately. 

Theorem 7.4. Let p > s + 1, choose p = p(q, p, s, L) > 0 to satisfy the 
inequalities in (7.21), and let d,8(t) be a finite, nonnegative Borel measure 
defined on [0, oc) with support including some nonempty subset of (0, oo). If 
h(x) and A have the form 

h(x): J e-t1X12 d,fi(t) and A:= j At d(t), 

then 

112~ ~ f?? e_SP 2/( 16p2 t) 
(7.23) c*Ac > 8(q, s, p, L)1jc112 where 0 := 2 j0 (4.tp2Sp(0)2)S/2 dfl(t). 

Proof. The lower bound (7.23) follows from first multiplying both sides of 
(7.22) by ct, p, then replacing ct, p in (7.22) with the expression found in (7.7), 
and finally integrating the result with respect to d,i. o 

The matrix A is of course the interpolation matrix for the problem described 
at the beginning of this section, provided the CPDF used is the h defined in 
Theorem 7.4. We can now precisely state the estimate for //A' that we 
promised earlier. 
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Corollary 7.5. With the notation and assumptions of Theorem 7.4, we have that 

(7.24) IA '11 < 06'. 
Proof. As a consequence of (7.23), the lowest eigenvalue of A is bounded below 
by 0. Using the fact that 11A' is the reciprocal of the lowest eigenvalue yields 
(7.24). o 

The bound (7.24) does not depend on N, which is the number of data sites. 
As promised, it does depend on the length scales involved, q and L, and 
also on both p, the order of the B-spline used, and s, the dimension of the 
ambient space. (By choosing p = s + 1, one may remove the dependence on 
p.) This behavior is similar to what was found in [201 for the problem in which 
only function values are interpolated. For certain order-one CPDFs (see [20]), 
one may also use (7.22) to obtain formulas similar to those in Theorem 7.4 
and Corollary 7.5. Indeed, one can use (7.22) with bj = 0, j = 1, ... , N, 
to recover an estimate similar to that given in [20, Theorem 2.31]; only the 
constants used are different. 

We remark that the Hermite interpolation problem for which we have derived 
our estimates required as data both value and derivative along a vector at each 
data site. The line of reasoning used, however, can easily be applied to the case 
in which one has as data either value or derivative along a vector or both at 
each data site. The resulting estimates are unchanged. 
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